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QUESTION OF CONSTRUCTING TIKHONOV REGULARIZING ALGORITHMS FOR NON- 

ONE-DIMENSIONAL INVERSE PROBLEMS OF HEAT CONDUCTION 

V. B. Glasko and E. E. Kondorskaya UDC 517.9:536.2 

Tikhonov regularizing algorithms are formulated and given a foundation for the 

multidimensional problem of determining the density of a finite heat source. 
Uniqueness of the solution is studied for one of the formulations of the problem. 

is One of the inverse problems in the theory of heat conduction is that of determining 

the characteristics of a finite heat source by means of certain data about the temperature 
field it generates -- in particular, the problem of detecting defects in the lining of exo- 

thermal production reactors that originate during their utilization. 

Since the inverse problem being considered is among the incorrect ones, a Tikhonov 

regularizing algorithm (RA) must be utiliaed for its solution [I]. The concept of an RA 
includes a broad class of stable algorithms and some have been developed or realized in [2, 

3] for heat conduction problems. The most extensive domain of application, including the 
topic under consideration, has a general A. N, Tikhonov regularizing algorithm based on the 
solution of a certain auxiliary variational problem for a "smoothing" functional. The 

stabilizer [i] is the element of such a functional that governs the stability~ 

This algorithm was realized in [4, 5] for the solution of different one-dimensional in- 

verse problems, The problem of determining a heat source s multidimensional. En this case 
the stabilizer construction given a mathematical foundation is sufficiennly complicated, and 
the question occurs of a possible simplification so well founded as to denote a saving in 

machine computations in practice, 

In this paper we limit ourselves mainly to a well-founded formulation of simplifications 

associated with the finiteness of the desired function. Here the starting point is the tact 
that accordin Z to [6] the problem of minimizing the Fikhonov smoothing ~unc[ional governing 
the general RA can also include quantitative information about the desired solution of the 
problem. The boundary conditions for the desired function can be such information for the 

problem of a finite source. 

Let us note that the general Tikhonov RA and the modifications proposed below are con- 
sidered for utilization with an electronic computer~ which corresponds to modern possibilities 

of engineering practice and its prospects. 

2, Let us first consider the problem of a concentrated heat source, in which example 

we clarify the question of the correctness of the formulation as well as the possibility of 
simplifying the stabilizer. Here and henceforth, we limit ourselves to a consideration of an 

infinitely extended spatial model, which does not limit <he generaliny of the algorithms 
being formulated for problems of appropriate dimensionalityo 

Let the temperature field u(x, t), x = (x~, x2) ~ E2 satisfy the conditions 

0u 
, , ~ , ,  iul ~ O, u l t=o  = 0 ,  kAu@F(x ,  t ) = c 9 - ~ -  I x l < @  ~ 0<t/w t.~t~ "~" 

where F(x, t) = f(t)~(x, Xo), 6(x, Xo) is the Dirac function, and xo is the source location 

f(t) - 0 for t ~-~0. 
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The desired quantities in the inverse problem in which we are interested are xo and f(t) 
that are related to the exact temperature field by the equation 

f 

u(x, t )=  .t G~.(tx-xol2, t--'Of('Od~----A(x, t, Xo, f)=A(xo, f), (2) 
0 

where G2 i s  t he  G r e e n ' s  f u n c t i o n  f o r  a p l a n e ,  A(x,  t ,  Xo, f )  and A(xo,  f )  a r e  the  a b b r e v i a t e d  
notation for the nonlinear integral operator on the right. 

If Xo is given, then for any fixed x # Xo Eq. (2) is an integral equation of convolution 

type and under the assumption of the continuity of f(t) has a unique solution for f(t) [7], 
On the other hand, if f(t) is given and xo = (x~o, X2o) is desired, then for fixed Xs # Xo, 

s = I, 2 and t = t~ > 0, (2) is a system of transcendental equations in x~o, x2o. Setting 
Ix s -- Xo[ 2 - ~ (in the expression G~), we note that 

fl 

0 

is a continuous, monotonically decreasing function (~(~) -+ 0 as ~ + ~ and(~(~) § ~ as ~ § 0), 
and hence, the equation ~{~) = U(Xs, tl) has a unique solution ~s for every s. 

However, a pair of values ~i and ~2 determines a pair of points of a plane for an a 
priori existence of the solution (the intersection of pairs of circles); for a single-valued 

selection of one of them it is sufficient to give the value of the temperature at still 
another point not coincident with the first two. 

Without going into the question of the single-valued determination of the full set of Xo, 
f(t), let us note that the analysis performed permits the idea that the minimal information by 

which the single-valued solution of the problem can be computed is the assignment of the tem- 

perature at the time t~ > 0 at any three points not on one line (and not agreeing a priori 
with xo) as well as the temperature at one of these points as a function of time. We take 

this observation as a working hypothesis for the formulation of the algorithm.* If the solu- 
tion of the problem is unique for such data, then utilization of the RA will afford a pos- 

sibility of obtaining an arbitrarily exact approximation to the appropriate solution of the 

problem for a sufficiently small error in the input data. 

If the temperature is given inaccurately (measured) 

T 
~(u,  4) = j' (~ (x,, t) - ~ (x,, 0)2d~ + ~ p ~ (~ ,  O - -  ~ ~ ,  t~))~ ~ S ~- 

0 s = 2  

(where p is a dimensionality factor and ~ is a measure of the error), then (2) has no solution 

because of the continuity of G2 in x and t and the simultaneously stochastic discontinuity of 
the given function; in other words, the first condition for correctness of the problem formu- 

lation is spoiled and (2) is only a "conditional" equation. But even in the presence of a 
solution (for a certain ~) its instability relative to the variation fi is evident (fi(x, t) is 
the integral effect of the function f(t) which is not responsive to its abrupt local changes). 

In other words the third condition for correctness in the formulation of the problem is 
spoiled. 

We use qualitative information about the desired solution for the possible correct for- 
mulation of the problem. Let it be known that f(t) is a smooth function bounded in the inter- 

val of observations (0, T). These conditions are automatically assured (in the general RA) 
by the introduction of the "stabilizer" functional [i]: 

T 

o. if] ~ i ( f ( ' 0  + f~(~))dt, 

where no quantitative information about f(t) (in particular, the constants bounding ~) is 
required. The evident information about the boundedness of the vector xo also exactly 

generates the stabilizer: 

*Let us note that the general RA assures convergence to a certain completely determined solu- 
tion even in the case when the solution is not unique [i]. 
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2 

r [xo]  - ~  q " i 
i = l  

(q is a dimensionality factor , which within the framework of the general RA assures the 

boundedness of xo without additional quantitative information. 

Now, the Tikhonov regularizing algorithm can be formulated as any algorithm to minimize 
the smoothing functional which is in our case 

F=(x o, /)~pS(Af, u) + ~(~If] + ~[xo]), (3) 

where 

T 3 

p2(A i, u)-~ j' (A (x~, t, xo, f)--~(x~, t))2dt +- p ~ (A (x~, !~, xo, / ) -  5(x~, t)) ~. 
0 s=2  

The value a = a(d) can be selected during the computation from the residuol condition [i, 8]: 
p2(A(x~o, f~), ~) = 62 if (x~o, f~) minimizes (3) for a certain ~. 

The finite-difference approximation of f, f' and the elements of (3) result in a varia- 

tional problem for a function of many variables F~(x~o, x~o, f~, "-', fm) but we do not con- 
sider here the detailed description of the procedure for successive minimization (by a reduc- 
tion of ~) described in [9] for a similar type of problem where the effectiveness of the 

algorithm is also shown. 

Let us turn to the question of simplifying the stabilizer for f(t). We note that the 

effectiveness of the general RA is assured by the condition (7): the set of functions f(t) 
for which ~[f] ~ d (for some d > O) is compact in C[0, T]. This latter means (without 
limiting the generality) that any infinite sequence fn(t) from this set will converge uni- 
formly in [0, T] to a certain function ~(t). In particular, for sufficiently small 6, 
max If~(6) kt) -- f(t) I is arbitrarily small if (xo, f(t)) is the exact solution of the for- 
mulated problem. For the stabilizer selected the condition (7) is satisfied automatically 
for the minimization (3). If we set 

T 

I l l  = ;ao I l l  = ~ f'~ (0 dt 

(without using any information about f(t) except smoothness), then the condition (7) is not 
satisfied so that the convergence of the approximation to the exact solution is not assured. 

However, in the problem under consideration the condition f(0) = 0 is natural additional 
information about f(t). As is shown in [6], the set of functions f(t) for which ~o[f] ~ d 
and f(0) = 0 simultaneously, is compact in C[0, T]. Hence, the algorithm to minimize the 
functional o2(Af, 5) + ~@o[f] + ~[xo]) in a set with the constraint f(0) = 0 (realizable 

without difficulty in a finite approximation) remains Tikhonov regularizing for the problem 
under consideration. 

3. The simplification of the stabilizer executed in Sec. 2 can turn out to be especially 
effective for multidimensional problems. 

Let us consider the problem of a finite heat source with the density f(x, t), x = (xl, 
..., x n) @ En, n = I~ 2, 3, where f(x, t) ~ 0 outside the domain gn cE n and for t~ O. 

Taking account of the results of investigating the single-valuedness of the mapping 
u(x, t) + f(x, t) in the preceding problem and without examining the corresponding problem 

for a continuous density, let us consider assignment of the temperature u(x, t) in a certain 
domain without an intersection (in the space variables) with gn(t ~ [0, T])* to be reasonable 
minimal information for the determination of f(x, t). 

Then a problem analogous to (i) results in the following (conditional for inaccurately 
given N(x, t)) integral equation: 

*Assignment of u(x, t) everywhere in E n for t > 0 evidently determines f(x, t) single'valuedly, 
but we are interested in minimal information. 
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a(,, 
gn 0 

where G n is the Green's function for a space of appropriate dimensionality, and Af is, as 

before, the abbreviated notation for the integral operator. 

Let 

(4) 

T 

92(u, u )~  f.i' (u(x, t)--~lx,  t))~dxdt-~6t 
1) n 0 

Then the general Tikhonov RA can be formulated for a previous matching of ~ and ~, in the form 

inf F~ Ill, F,~ If] ~- o2(Jf, if) + 0:9_ Ill, (5) 

where ~[f] is the stabilizer. 

The stabilizer for the multidimensional problem under consideration (the functional 

satisfying the condition (Y) in Sec. 2) has the form 

~ n  0 ~ k = O  A ~ + . . . + h ~ z + l = A  " " ' , 

u n d e r  t h e  c o n d i t i o n  that 2p > n + 1 [ 1 0 ] ;  p ~ 2  f o r  a l i n e  (n  = 1) and  a p l a n e  (n = 2 ) ,  r e -  
s p e c t i v e l y ,  while p ~3 for three-dimensional space (n = 3). Here the presence of all deriva- 

tives of the same order (including mixed) in the sum is essential. 

Let us show that under definite additional information about the source, the simplified 

functional 

r ( O,z._lf \2 
I dxdL ( 7 )  otfJ = .[,i t ) 

grl. 0 

can be used as stabilizer in the multidimensional problem under consideration. Let gn be a 

generalized parallelepiped, c. i-<~ x i _< bi~ i = i, 2, ..., n, and let the exact solution of the 
problem satisfy the conditions (8): f(a i, t) = 0 (or f(bi, t) = 0), i = I, ,2, ..., n; ~(x, 0) = 
0 is sufficiently natural for a finite source+ Let K denote the set of functions f(x, t) 

satisfying the conditions ($) and possessing continuous derivatives corresponding to (7). 

THEOREM, For any d > 0 the set {f(x, t)} satisfying the conditions no[f] --< d, f E K is 

compact in C(g n x [0, T]). 

Let us limit ourselves to the proof of this assertion for n = 1 and the case f(ai, t) = 

0 (for n > 1 and the case f(bi, t) = 0 the proof is analogous). 

We see the equipotential continuity of the functions satisfying the conditions of the 
theorem. For any pair of points (xl, tl) and (x2, t2) from the domain under consideration, 
If(x~, tl) -- f(x2, t2)! ~ If(x~, t~) -- f(x~, t2)l + If(x~, t2) -- f(x2, t2) i - AI + A2. But 

t~ tz 

A, = if(x~, ~k-- f(x, ,  &) l<  j" af dt ~ ( af (x~, of -ff[-(x,, t) ~ j" \-~ t ) - -~7(a , ,  t)) dt I , 
t~ t i  

since f(a~, t) = 0, which means 3f/3t(a,, t) = 0. Hence 

li 
t~  x~ 

A n a l o g o u s l y ,  b e c a u s e  of  t h e  c o n d i t i o n  f ( x ,  O) ; O, w h i c h  me a ns  S f / 3 x ( x ,  O) = 0 Ax ~ d2 
/ T x ~ -  x ; I ,  whe re  d2 - (dr) ~/~. Using t h e  n o t a t i o n  da = m a x ( d ~ ,  da)  we h a v e  I f ( x z ,  t ~ ) -  
f(xa, t2) ] ~ da(~(t~ ta) 2 + f(~ -- x-2---)2) --< 2da~(ta -- tz) 2 + (xz -- x2) 2 , from which indeed 

follows the equipotential continuity of the functions in the conditions of the theorem. 

We see their uniform boundedness. For any point (x, t)E g~ • [0, T] If(x, t) I = If(x, 
t) -- f(x, 0) I~:2d3~ according to the preceding estimate, and the uniform boundedness is 

proved. 

*Here the Cauchy--Bunyakovskii inequality is used. 
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According to the Artsel theorem [Ii], compactness of the set in the sense of uniform 
convergence follows from the equipotential continuity and uniform boundedness of the functions. 
The theorem is proved. 

Therefore, for the problem under consideration the regularized approximation f~(6)(x, t) 
to f(x, t) can be found from the following variational problem 

inf F~ [/], F~ If] = 9~ (Af, ~) + ~o [/], f ~ K, (8) 

where e(6) is determined by the condition pZ(Af~, u) = @z 

Let us note that for practical purposes the Euler equation following from (8) can be used, 

where it is taken into account in a natural manner that the approximation belongs to the set 
K. Here, however, more detailed information about the desired solution must be used as com- 

pared with the method of direct minimization and the theorem. The Euler e@uation is obtained 
by the ordinary variational method [i], and in particular, has the following form for n = 1 

. r OV 

g~ o O~120t~ 

under the conditions f(~, t) = f(b, t) = 0, f(x, 0) = 0 which are natural for problems with 
a finite source, and the additional condition f' (x, T) = 0 which can turn out to be approxi- 
mate. Here 

T 

D~ O 

T 
b 0], t) ~ .( .( G l(x, ~1, O, t) u (x ,  O) dxdO. 

D~ O 

Finite-difference approximations reduce (9) to a system of linear algebraic equations solved 
by standard programs. 

The theorem established above is true even for spaces of arbitrary dimension (n > 9), 
which has~ however, no relationship to the problem under consideration. The simplified func- 

tional introduced here (and in Sec. 2) is naturally called a conditional stabilizer. 

4. For certain two-dimensional inverse problems a functional that is a formal general- 

ization of ~[f] (Sec.2) is sometimes utilized. Namely, if f = f(x, y, z) is a function of 
three variables defined in the domain g, then 

~,  !f] ~ l]f l lL,  = _ _,~, ,  ; [ \ \ O x  ) + -t- § (lO) \, @; ) ,, O z  ) , 

It is easy to see that such a functional does not satisfy the condition (T), and there: 

fore, is not a stabilizer assuring any accuracy of the approximation (for sufficiently small 
6) without involving additional information about the desired solution. Indeed, let (xo, yo, 
zo) 6 g and f = fx(x, y, z) = r -X, r = (x -- Xo) 2 + (y -- yo) 2 + (z -- Zo)2) I/a. Then 

>~ { x - -  xo g -- Fo z ~ zo } 
Af~ - , F l  r ' r r ' 

and ~[fx] is bounded for any X: 0 < X 1/2. However~ fx(x, y, z) § ~ as (x, y, z) + (xo, 

yo, zo) is discontinuous and not bounded in g. Therefore, the set {f(x~ y, z)} for which 
~[f]~ d cannot be a set of either a uniformly bounded or equipotentially continuous func- 
tions. Involvement of additional quantitative information of the boundary-condition type evi- 

dently does not alter the situation (an example from the class of "fundamental" functions can 
be cited [12]). 

Utilization of this functional as stabilizer [i, 13] can be given a foundation only by 
taking more complete account of the specific properties of the solution in the algorithm 
being developed. Thus, the desired solution of the inverse problem in [13] satisfies the 
Laplace equation, and this is used together with quantitative constraints of the boundary- 
conditions type. In such a situation (i0) is also a conditional stabilizer. 
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ANALYSIS OF TEMPERATURE FIELDS OF BODIES IN THE SHAPE OF SHELLS 

N. M. Belyaev, V. I. Zavelion, 
and A. A. Ryadno 

UDC 536.24:539.3 

The temperature fields in axisymmetric thick-wailed shells with different middle 
surface shape are investigated. 

In performing thermal engineering analyses of metallurgical or power equipment there 
often occurs the need to solve heat conduction problems for bodies in the shape of shells. 
In these cases it is natural to use shell theory methods [1-3]. The nonclassical theory of 
shells [2], whose equations are valid for nonthin shells with rapidly varying geometry and 
thickness, is used below to determine the nonstationary temperature field of a unified slag 
car cup. 

A slag car cup is an axisymmetric thick~walled shell formed by a spherical segment con- 
nected to a hollow truncated cone of linearly varying thickness; hence, the boundary condi- 
tions will also be axisymmetric, which permits solution of the problem for the domain dis- 
played in Fig. i. The slag pouring periods and further heating of the cup up to the time of 
emptying are considered; it is assumed in the computations that the thermophysical constants 
of the cup material are independent of the temperature. 
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